Second Year, 2015-16 Solution
Statistics - IT - Semestral Exam - Semester I1

1. Let X1,...,Xn be a random sample from a population with density f(x|6) = exp(—(z —0)), = > 0,
where —oo < 0 < 00 is unknown. Consider testing at level «

Hy: 60 <0 versus Hy : 6 > 0.

(a) Show that the conditions required for the existence of UMP test are satisfied here.
(b) Derive the UMP test of level a.
(¢) Find the minimal sufficient statistic for 0.

Solution: The joint pdf of X1,..., X, is

n

f(x10) = exp(— (w; — 0)I (minz; > ).

i=1

Using the Factorization Theorem, we get that X (1) = minX; is the sufficient statistic for 6.
1
(a) The distribution of Xy is

9(y|0) = exp(—n(y — 0))I(y > 0).

The family of pdfs {g(y|0) : 0§ € (—o0,00)} has a monotone likelihood ratio (MLR), as for

every #; > 61, the ratio ZEZIZ?; is a monotone function of y on {y : g(y|f1) > 0 or g(y|f2) > 0}.

This can be seen as
Z%Igfg = exp(n(fy — 01))%1%33 = exp(n(fy —0y)), for y > 6
= 0for 6 <y <6,
Using the theorem due to Karlin and Rubin, for any g, the test that rejects Hy if and only if

X1y > yo is a UMP level a test, where o = Pp, (X (1) > vo).
(b) Choosing

Yo = —log(a)/n,
we get Pr,(X(1) > yo) = a. For testing Hy against Hy, the UMP test of level o, is
o(x) = 1, for minz; > —log(a)/n

= 0 otherwise.

(¢) Let x and y be two sample points. Then, the ratio of the densities

f(x16) exp(— > i, (wi — 9))I(ml_inxi > 6)

F10) — exp(= 321 (yi — 0))I (miny; > 0)”

is independent of 0 if and only if minx; = miny;. Thus, X(;) = minX; is the minimal sufficient
K3 1 3

statistic for 6.

O



2. Suppose X1,...,X, is a random sample from N(u,o?) where both p and o are unknown.

(a) Derive the generalized likelihood ratio level a test for testing Ho : 02 = 1 versus Hy : 02 # 1.
(b) Is this also the UMP level o test? Justify?.

Solution: The likelihood function is defined as

L(p, 02|X) =

(a) The entire parameter space is © = {u,0% : —0o < u < 00,02 > 0}. The parameter space
under Hy is ©¢ = {1, 0% : —00 < pu < 00,02 = 1}. The LRT statistic is

supL(p, 1|x)
Alx) = —2

supL(p, 02|x)’
(C]

The MLE for p over the parameter space {p: —oo < pp < 0o} is @, = Y .-, x;/n. The MLE
of p and o2 over ©, respectively, are Z,, and s2 = (Z?ﬂ(% - i‘n)2)/n Then,

S2TL

E;L:l(xi_in)z) ) ) n
= (s2)"/ eacp(—T + 5)

exp(— 3

Wexp(—%)

Ax) =

The generalized likelihood ratio test rejects Hy for small values of A(x). The critical region
can be written as {x : A\(x) < c}.

Under Hy, Y"1 (X; — X,,)? follows a x?(n — 1) distribution, where x?(n — 1) denotes the x>
distribution with (n — 1) degrees. The critical region for generalized likelihood ratio test that
rejects Hy is

2
(52 2eap(~ 58 < ceap(~2yn/2 = o,

where ¢, is chosen to give a size « test.
The above critical region for generalized likelihood ratio test of size v that rejects Hg can be
written as

2 / 2 /
ns, < ¢4, and ns; > ¢y ,,

where ¢} , and ¢, , are chosen such that
: ;

Py (O (X = Xn)* < n > (Xi = X0)? > ,) =
i=1 i=1
For an equal tail test,
o o
cll,oc :XQ(n_l)(§)7 and C/2,a :X2(’I’L—1)(1—§),

where x?(n — 1)(%) is the a x 100" percentile of the x*(n — 1) distribution.



(b) The generalized likelihood ratio level « test for testing Hy : 02 = 1 versus H; : 02 # 1 derived
in (a) is not a UMP test. Let ¢(x) denote the test derived in (a).

For testing Hy against Hj : 02 > 1, a test of the form
p1(x) = 1, for >0 (z — Tp)? > x2(n—1)(1 — a),
= 0 otherwise,
is UMP test of size a.

The power of test ¢; cannot exceed the power of test ¢ for testing Hy against Hy' : ¢ < 1. Sim-
ilarly, the power of test ¢ cannot exceed the power of ¢; test for testing Hy against Hj : 0 > 1.
Therefore, ¢(x) cannot be the UMP level « test for testing Hy against Hj.

3. Let X denote the number of independent Bernoulli(0) trials before the first success occurs.

(a) What is the probability mass function of X ¢
(b) Find the Fisher Information I(6) contained in X.

Let X4,...,X,, be a random sample from the distribution of X with 0 < 6 < 1 unknown.

(¢) Find an estimator T,, = T,,(X1, ..., X,) such that

V(T — ) — N(o, %@)

(d) Is it true that any estimator as in (c) above is a consistent estimator of 07 Why?

Solution:

(a) The probability mass function for X is

p(z|d) =(1—-0)*0,2=0,1,....
(b)

logp(x]0) = zlog(1l — 0) + log.

The Fisher’s information number is

al(*% )] =5l (25 0) 1= B (X0 50 = ey

(c) Let logL(f|x) denote the log likelihood function. Then,

logL(0|x) = sz(l —0) + nlogb.

i=1
The partial derivative, with respect to 6 is

dlogL(B|x) _ _Z?:l Ti 7
0  (1-0) ¢




Setting the partial derivative to 0 and solving the equation yields the following unique solution

where z,, = >, x;/n. Also,
d*logL(0|x)

d072  lo—s, =

The MLE for @ is 6,,.

As the distribution function of X, satisfies the regularity conditions, the MLE 0, is asymp-
totically normally distributed, <.e.

(6, —0) %N(O,ﬁ), as n — oo.

One can choose the estimator T,, as én

(d) Yes, any estimator as in (c¢) above will be a consistent estimator. Let Z follow a standard
normal distribution. As

— Z lim

movEl 2l

T,, — 0 converges in distribution to 0, as n — oco. Hence, T;, — 6 converges in probability to 0,
as n — 0o.

T, =6 =/n(T, — O)L(0)] —0,

O

4. In an ecological study 5 independent attempts were made to photographically capture (or to camera
trap) a particular tiger. The fourth attempt provided the only success. The success probability, 0, is
known as the detection probability. Assume that the prior distribution on 0 is Beta(0.2,1).

(a) Derive the posterior distribution of 0 given the data.
(b) Find the highest posterior density estimate of 6.
(¢) Find the posterior mean and posterior standard deviation of 0.

(d) Consider testing Hy : 6 < 0.25 versus Hy : 6 > 0.25. Explain the Bayesian approach for this.

Solution: Let Y be the number of successes of camera trapping the particular tiger in n attempts.
Then,

F(ylo) = (”) 0Y(1—0)" Y,y =0,...,n
Y
The prior distribution of 8 is

(1.2)

08 )<< 1.
T(0.2)0(1)

9(0) =
(a) The joint distribution of Y and 6 is

p1(y,0) = f(yl0)g(0).



The marginal pdf of ¥ is

o _(n\ T2 T(y+02)T(n-y+1)
p(y) = A pl(yye)do = (y) F(02)F(1) F(n + 12) '

The posterior distribution of 6 given data (y = 1,n = 5), is

p(u.6) _ T(62)
ply) ~ TL2T()

i.e. the posterior distribution of 6 given data (y = 1,n = 5), is Beta(1.2,5).

g1 (8ly) = 6°2(1-0)1,0<6 < 1,

The posterior density g(|y) is unimodal, with the mode
02 1
42 21

The highest posterior density estimate of 8 is 1/21 = 0.04762.
Let X follow a Beta(a, 8) distribution. Then, the mean

(o + fB) /1 21 — )/ ~1dg = Ia+8) T(a+ 1)INa) o
0

T (@)T'(5) F@T@) Tla+p+1)  a+p
Similarly, it can be shown that

E(X) =

ala+1)

B(X*) = (a+B)(a+B+1)

The variance is,
of
(a+B)(a+p+1)
Putting @ = 1.2 and 8 = 5, the posterior mean and posterior standard deviation of 6 are
0.19354 and 0.14724, respectively.

The given problem of hypothesis testing can be viewed as a special decision problem. Given
the observation y, the decision d(y) € A, where A = {aj,a2} is the action set, with a;
corresponding to acceptance of Hy and as corresponding to rejection of Hy. The decision
function d divides the space of values of Y into set C' and its complement C¢, such that if
y € C we take the decision d(y) = a1 (accept Hp), and if y € C°, we take decision d(y) = a
(reject Hp). In Bayesian approach, we choose the decision function d that minimizes the risk
R(g,d) = E(Ey(L(0,d))), for a loss function L defined on (0,1) X A. One can choose the Loss
function L as (a(),b(0) > 0),

E(X?) - (B(X))? =

L(f,a1) = 0, for # <0.25
= a(6), for 6 > 0.25,
L(6,a5) = 0, for 6> 0.25

= (), for 6 <0.25.
We choose d that minimizes R(g,d). As R(g,d) = E(Ep(L(0,d))), it suffices to minimize
E(L(0,d(y))|Y =y). Then,
E(LO,dW))IY =y) = Jps0.252(0)91(0]y)do for d(y) = as,
= f9<0'25 b(0)g1(0]y)do for d(y) = as.
It follows that we reject Hy, i.e. take action d(y) = ag if

/ b(6)g1 (6])d6 < / a(8)91 (8])do.
6<0.25 0>0.25



For a(f) =1, for § > 0.25 and b(#) = 1, for § < 0.25, the above can be written as

[N

0.25
/ 9(6ly)d6 <
0

The above inequality implies that Hj is rejected in favor of H; if and only if the median of
the posterior distribution Beta(1.2,5) is greater than 0.25.

O
5. (a) Let S and T be two statistics such that S has finite variance. Show that
Var(S) =Var(E(S|T)) + E(Var(S|T)).

(b) Suppose (X1, Xa, ..., X,) has probability distribution Py,0 € ©. Let §(X1, Xo, ..., X,) be an es-
timator of 0 with finite variance. Suppose that T is sufficient for 0, and let 6*(t) = E(6(X1, Xa, ..., Xp)|T =
t), be the conditional expectation of §(X1,Xa,...,X,) given T = t. Then, arquing as in (a), and
without applying Jensen’s inequality, prove that

E(6*(T) — 0)> < B(6(X1, Xo,...,X,) — 6)%,
with strict inequality unless § = 6* (i.e., § is already a function of T).
Solution:
(a)

Var(S) = B(S%) - [B(S)]* = B(E(S*|T)) — B([E(S|T)*) + E([E(S|T)]*) - [E(S))?
E(Var(S|T)) + E([E(S|T)]?) — [E(E(S|T)))*
)

E(Var(S|T)) + Var([E(S|T))).

(b) E(6(X1,Xa2,...,Xp))=0. In (a), put S = (X1, Xo,...,X,). Then,

B(6(X1,Xa,...,X,) — 02 =Var(B(6(X1, Xa,...,X)|T)) + EVar(§(X1, Xa, ..., X,)|T))
> Var(E(§(X1, Xa,..., X,)|T)), (1)

because E(Var(§(X1, Xa,...,X,)|T)) > 0. As
Var(E(6(X1, X2, ..., X,)|T)) = Var(6*(T)) = E(5*(T) — )2

we get
B(6(X1, Xa,...,X,) — 0)> > E(6*(T) — 0)%.

The equality exists if E(Var(6(X1, Xa,...,X,)|T)) =0, i.e.

B(E[(6(X1,Xa,...,X,) —6(T))*T]) =0
= 0(X1,Xo2,..., Xy) = B(0(X1, Xo,..., Xy,)|T) =0,

i.e. § is a function of T'.



