
Second Year, 2015-16 Solution
Statistics - II - Semestral Exam - Semester II

1. Let X1, . . . , Xn be a random sample from a population with density f(x|θ) = exp(−(x− θ)), x > θ,
where −∞ < θ <∞ is unknown. Consider testing at level α

H0 : θ ≤ 0 versus H1 : θ > 0.

(a) Show that the conditions required for the existence of UMP test are satisfied here.

(b) Derive the UMP test of level α.

(c) Find the minimal sufficient statistic for θ.

Solution: The joint pdf of X1, . . . , Xn is

f(x|θ) = exp(−
n∑
i=1

(xi − θ))I(min
i
xi > θ).

Using the Factorization Theorem, we get that X(1) = min
i
Xi is the sufficient statistic for θ.

(a) The distribution of X(1) is

g(y|θ) = exp(−n(y − θ))I(y > θ).

The family of pdfs {g(y|θ) : θ ∈ (−∞,∞)} has a monotone likelihood ratio (MLR), as for

every θ2 > θ1, the ratio g(y|θ2)
g(y|θ1) is a monotone function of y on {y : g(y|θ1) > 0 or g(y|θ2) > 0}.

This can be seen as
g(y|θ2)
g(y|θ1) = exp(n(θ2 − θ1)) I(y>θ2)

I(y>θ1) = exp(n(θ2 − θ1)), for y > θ2

= 0 for θ1 < y ≤ θ2.
Using the theorem due to Karlin and Rubin, for any y0, the test that rejects H0 if and only if
X(1) > y0 is a UMP level α test, where α = PH0

(X(1) > y0).

(b) Choosing
y0 = −log(α)/n,

we get PH0(X(1) > y0) = α. For testing H0 against H1, the UMP test of level α, is

φ(x) = 1, for min
i
xi > −log(α)/n

= 0 otherwise.

(c) Let x and y be two sample points. Then, the ratio of the densities

f(x|θ)
f(y|θ)

=
exp(−

∑n
i=1(xi − θ))I(min

i
xi > θ)

exp(−
∑n
i=1(yi − θ))I(min

i
yi > θ)

,

is independent of θ if and only if min
i
xi = min

i
yi. Thus, X(1) = min

i
Xi is the minimal sufficient

statistic for θ.

�

1



2. Suppose X1, . . . , Xn is a random sample from N(µ, σ2) where both µ and σ2 are unknown.

(a) Derive the generalized likelihood ratio level α test for testing H0 : σ2 = 1 versus H1 : σ2 6= 1.

(b) Is this also the UMP level α test? Justify?.

Solution: The likelihood function is defined as

L(µ, σ2|x) =
1

(2πσ2)n/2
exp(−

∑n
i=1(xi − µ)2

2σ2
).

(a) The entire parameter space is Θ = {µ, σ2 : −∞ < µ < ∞, σ2 ≥ 0}. The parameter space
under H0 is Θ0 = {µ, σ2 : −∞ < µ <∞, σ2 = 1}. The LRT statistic is

λ(x) =

sup
Θ0

L(µ, 1|x)

sup
Θ
L(µ, σ2|x)

.

The MLE for µ over the parameter space {µ : −∞ < µ <∞} is x̄n =
∑n
i=1 xi/n. The MLE

of µ and σ2 over Θ, respectively, are x̄n and s2
n =

(∑n
i=1(xi − x̄n)2

)
/n. Then,

λ(x) =
exp(−

∑n
i=1(xi−x̄n)2

2 )
1

(s2n)n/2 exp(−n2 )
= (s2

n)n/2exp(−s
2n

2
+
n

2
).

The generalized likelihood ratio test rejects H0 for small values of λ(x). The critical region
can be written as {x : λ(x) ≤ c}.
Under H0,

∑n
i=1(Xi − X̄n)2 follows a χ2(n− 1) distribution, where χ2(n− 1) denotes the χ2

distribution with (n− 1) degrees. The critical region for generalized likelihood ratio test that
rejects H0 is

(ns2
n)n/2exp(− (ns2

n)

2
) ≤ cαexp(−

n

2
)nn/2 = c′α

where c′α is chosen to give a size α test.

The above critical region for generalized likelihood ratio test of size α that rejects H0 can be
written as

ns2
n < c′1,α, and ns2

n > c′2,α,

where c′1,α and c′2,α are chosen such that

PH0
(

n∑
i=1

(Xi − X̄n)2 < c′1,α,

n∑
i=1

(Xi − X̄n)2 > c′2,α) = α.

For an equal tail test,

c′1,α = χ2(n− 1)(
α

2
), and c′2,α = χ2(n− 1)(1− α

2
),

where χ2(n− 1)(α2 ) is the α× 100th percentile of the χ2(n− 1) distribution.
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(b) The generalized likelihood ratio level α test for testing H0 : σ2 = 1 versus H1 : σ2 6= 1 derived
in (a) is not a UMP test. Let φ(x) denote the test derived in (a).

For testing H0 against H ′1 : σ2 > 1, a test of the form
φ1(x) = 1, for

∑n
i=1(xi − x̄n)2 > χ2(n− 1)(1− α),

= 0 otherwise,
is UMP test of size α.

The power of test φ1 cannot exceed the power of test φ for testing H0 against H ′′1 : σ2 < 1. Sim-
ilarly, the power of test φ cannot exceed the power of φ1 test for testing H0 against H ′1 : σ2 > 1.
Therefore, φ(x) cannot be the UMP level α test for testing H0 against H1.

�

3. Let X denote the number of independent Bernoulli(θ) trials before the first success occurs.

(a) What is the probability mass function of X?

(b) Find the Fisher Information I1(θ) contained in X.

Let X1, . . . , Xn be a random sample from the distribution of X with 0 < θ < 1 unknown.

(c) Find an estimator Tn = Tn(X1, . . . , Xn) such that

√
n(Tn − θ) −→ N

(
0,

1

I1(θ)

)
.

(d) Is it true that any estimator as in (c) above is a consistent estimator of θ? Why?

Solution:

(a) The probability mass function for X is

p(x|θ) = (1− θ)xθ, x = 0, 1, . . . .

(b)

logp(x|θ) = xlog(1− θ) + logθ.

The Fisher’s information number is

Eθ

[(∂logp(X|θ)
∂θ

)2]
= Eθ

[( −X
1− θ

+
1

θ

)2]
=

1

(1− θ)2
Eθ

[(
−X +

1− θ
θ

)2]
=

1

θ2(1− θ)
.

(c) Let logL(θ|x) denote the log likelihood function. Then,

logL(θ|x) =

n∑
i=1

xi(1− θ) + nlogθ.

The partial derivative, with respect to θ is

∂logL(θ|x)

∂θ
= −

∑n
i=1 xi

(1− θ)
+
n

θ
.
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Setting the partial derivative to 0 and solving the equation yields the following unique solution

θ̂n =
1

x̄n + 1
,

where x̄n =
∑n
i=1 xi/n. Also,

d2logL(θ|x)

d(θ)2

∣∣∣
θ=θ̂n

< 0.

The MLE for θ is θ̂n.

As the distribution function of X1 satisfies the regularity conditions, the MLE θ̂n is asymp-
totically normally distributed, i.e.

√
n(θ̂n − θ) −→ N

(
0,

1

I1(θ)

)
, as n → ∞.

One can choose the estimator Tn as θ̂n.

(d) Yes, any estimator as in (c) above will be a consistent estimator. Let Z follow a standard
normal distribution. As

Tn − θ =
√
n(Tn − θ)I1(θ)

[ 1

I1(θ)
√
n

]
−→ Z lim

n→∞

[ 1

I1(θ)
√
n

]
= 0,

Tn − θ converges in distribution to 0, as n → ∞. Hence, Tn − θ converges in probability to 0,
as n → ∞.

�

4. In an ecological study 5 independent attempts were made to photographically capture (or to camera
trap) a particular tiger. The fourth attempt provided the only success. The success probability, θ, is
known as the detection probability. Assume that the prior distribution on θ is Beta(0.2, 1).

(a) Derive the posterior distribution of θ given the data.

(b) Find the highest posterior density estimate of θ.

(c) Find the posterior mean and posterior standard deviation of θ.

(d) Consider testing H0 : θ ≤ 0.25 versus H1 : θ > 0.25. Explain the Bayesian approach for this.

Solution: Let Y be the number of successes of camera trapping the particular tiger in n attempts.
Then,

f(y|θ) =

(
n

y

)
θy(1− θ)n−y, y = 0, . . . , n.

The prior distribution of θ is

g(θ) =
Γ(1.2)

Γ(0.2)Γ(1)
θ−0.8, 0 < θ < 1.

(a) The joint distribution of Y and θ is

p1(y, θ) = f(y|θ)g(θ).
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The marginal pdf of Y is

p(y) =

∫ 1

0

p1(y, θ)dθ =

(
n

y

)
Γ(1.2)

Γ(0.2)Γ(1)

Γ(y + 0.2)Γ(n− y + 1)

Γ(n+ 1.2)
.

The posterior distribution of θ given data (y = 1, n = 5), is

g1(θ|y) =
p(y, θ)

p(y)
=

Γ(6.2)

Γ(1.2)Γ(5)
θ0.2(1− θ)4, 0 < θ < 1,

i.e. the posterior distribution of θ given data (y = 1, n = 5), is Beta(1.2, 5).

(b) The posterior density g(θ|y) is unimodal, with the mode

0.2

4.2
=

1

21
.

The highest posterior density estimate of θ is 1/21 = 0.04762.

(c) Let X follow a Beta(α, β) distribution. Then, the mean

E(X) =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα(1− x)β−1dx =
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 1)Γ(α)

Γ(α+ β + 1)
=

α

α+ β
.

Similarly, it can be shown that

E(X2) =
α(α+ 1)

(α+ β)(α+ β + 1)
.

The variance is,

E(X2)− (E(X))2 =
αβ

(α+ β)2(α+ β + 1)
.

Putting α = 1.2 and β = 5, the posterior mean and posterior standard deviation of θ are
0.19354 and 0.14724, respectively.

(d) The given problem of hypothesis testing can be viewed as a special decision problem. Given
the observation y, the decision d(y) ∈ A, where A = {a1, a2} is the action set, with a1

corresponding to acceptance of H0 and a2 corresponding to rejection of H0. The decision
function d divides the space of values of Y into set C and its complement Cc, such that if
y ∈ C we take the decision d(y) = a1 (accept H0), and if y ∈ Cc, we take decision d(y) = a2

(reject H0). In Bayesian approach, we choose the decision function d that minimizes the risk
R(g, d) = E(Eθ(L(θ, d))), for a loss function L defined on (0, 1)×A. One can choose the Loss
function L as (a(θ), b(θ) > 0),
L(θ, a1) = 0, for θ ≤ 0.25

= a(θ), for θ > 0.25,
L(θ, a2) = 0, for θ > 0.25

= b(θ), for θ ≤ 0.25.
We choose d that minimizes R(g, d). As R(g, d) = E(Eθ(L(θ, d))), it suffices to minimize
E(L(θ, d(y))|Y = y). Then,
E(L(θ, d(y))|Y = y) =

∫
θ>0.25

a(θ)g1(θ|y)dθ for d(y) = a1,
=

∫
θ≤0.25

b(θ)g1(θ|y)dθ for d(y) = a2.

It follows that we reject H0, i.e. take action d(y) = a2 if∫
θ≤0.25

b(θ)g1(θ|y)dθ ≤
∫
θ>0.25

a(θ)g1(θ|y)dθ.
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For a(θ) ≡ 1, for θ > 0.25 and b(θ) ≡ 1, for θ ≤ 0.25, the above can be written as∫ 0.25

0

g(θ|y)dθ ≤ 1

2
.

The above inequality implies that H0 is rejected in favor of H1 if and only if the median of
the posterior distribution Beta(1.2, 5) is greater than 0.25.

�

5. (a) Let S and T be two statistics such that S has finite variance. Show that

V ar(S) = V ar(E(S|T )) + E(V ar(S|T )).

(b) Suppose (X1, X2, . . . , Xn) has probability distribution Pθ, θ ∈ Θ. Let δ(X1, X2, . . . , Xn) be an es-
timator of θ with finite variance. Suppose that T is sufficient for θ, and let δ?(t) = E(δ(X1, X2, . . . , Xn)|T =
t), be the conditional expectation of δ(X1, X2, . . . , Xn) given T = t. Then, arguing as in (a), and
without applying Jensen’s inequality, prove that

E(δ?(T )− θ)2 ≤ E(δ(X1, X2, . . . , Xn)− θ)2,

with strict inequality unless δ = δ?(i.e., δ is already a function of T ).

Solution:

(a)

V ar(S) = E(S2)− [E(S)]2 = E(E(S2|T ))− E([E(S|T )]2) + E([E(S|T )]2)− [E(S)]2

= E(V ar(S|T )) + E([E(S|T )]2)− [E(E(S|T ))]2

= E(V ar(S|T )) + V ar([E(S|T )]).

(b) E(δ(X1, X2, . . . , Xn)) = θ. In (a), put S = δ(X1, X2, . . . , Xn). Then,

E(δ(X1, X2, . . . , Xn)− θ)2 = V ar(E(δ(X1, X2, . . . , Xn)|T )) + E(V ar(δ(X1, X2, . . . , Xn)|T ))

≥ V ar(E(δ(X1, X2, . . . , Xn)|T )), (1)

because E(V ar(δ(X1, X2, . . . , Xn)|T )) ≥ 0. As

V ar(E(δ(X1, X2, . . . , Xn)|T )) = V ar(δ?(T )) = E(δ?(T )− θ)2

we get
E(δ(X1, X2, . . . , Xn)− θ)2 ≥ E(δ?(T )− θ)2.

The equality exists if E(V ar(δ(X1, X2, . . . , Xn)|T )) = 0, i.e.

E(E[(δ(X1, X2, . . . , Xn)− δ?(T ))2|T ]) = 0

=⇒ δ(X1, X2, . . . , Xn)− E(δ(X1, X2, . . . , Xn)|T ) = 0,

i.e. δ is a function of T .
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